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The method of residuals (see, e.g. (l-311) is used to solve the problem of estimation when both object and 
observations involve noise, and the input determination problem [3-51 is cousidered. These estimation 
problems are solved by minimizing a certain functional, and this in mm involves solving a boundary-vahre 
problem at each h&ant of time. Depending on the recurrent method used to solve the relevant family of 
boundary-value problems, one obtains different representations of optimal mm-linear filters for the estimated 
quantities. The choice of a specific representation depends on the degree to which the object with whose help 
the filter is beiig designed is well conditioned. A locally optimal filter of a design similar to that of filters for 
linear problems is constructed. 

The method of residuals has been used to estimate the states and parameters of systems with noisy 
observations [6]. 

1. DESCRIPTION OF THE STATE AND INPUT 

Consider a system of differential equations 

with observations 

Y(S) h cp(s, X(s), v(s)), to 6 s c t (l-2) 

The prime denotes differentiation with respect to S; X and y are calm vectors with 12 and m compon- 
ents, respectively, the equations of motion depend on an input u = z)(s) of dimensions k, and the 
approximate equality signs in (1 .l) and (1.2) indicate the presence of unknown noise in the object and 
in the observations. The problem is to estimate the input u(s), to d s G t, on the basis of observations 
over the interval [to, t] and an estimate of the state X(s). 

It is assumed that the ~~ions~(s, x, u), cp(s, x, u), and indeed all functions in thii paper, are such 
that all subsequent operations based on the assumption that the solutions of systems of differential 
equations can be extended as functions of time and are differentiable with respect to the initial data 
and the parameters are allowed. These requirements are met, for example, by assuming as usual that 
f and v, are smooth functions and that f is of bounded growth. 

Let us introduce a system with a control I( = (u, w) 

x’ =f(s, x, v) f D(s)w (l-3) 

and a functional defined on the solutions of system (1.3) 

J - +&d- mv@,)-~) + ‘; NY(s)- rp(s,X,U(s)))=Q(s)(y(s)-Fp(s, X(~),U(~)) + 
263 

+(‘u(~)--(s))Ts(s)(v(s)--;Ij(s)) + wT(s)R(s)w(s)]& w 
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In both (1.3) and (1.4) w is a column vector with r components and D is an n x r matrix, the IZ x n matrix 
P, the r x r matrix R and the k x k matrix S are positive definite, the m x m matrix Q is positive semi- 
definite, X is a known vector. The function 6(s), like X for the state X(fa), is an a priori estimate of the 
input U(S). The choice of the matrices D, Q and R depends on the available information about the 
structure and strength of the noise and P and S depend on the a priori information about the initial 
data and the input. 

An estimate of the stateX(s), to 6 s s t, based on observations over the interval [to, t] will be denoted 
by& (A$ will be denoted byx;). We shall seek it as an optimal trajectory in the sense that it minimizes 
the functional (1.4) on solutions of system (1.3). 

Note that the controls u and w have different physical meanings: while an optimal control w ensures 
that the residual in system (1.1) will be a minimum (in particular, when Eqs (1.1) hold exactly we put 
D, R and w equal to zero), an optimal 2) is an estimate of the unknown input. 

2. RECURRENT SOLUTION OF OPTIMUM PROBLEMS 

The following optimal control problem is sufficiently general for the type of problems being con- 
sidered here 

X’ =f(s, x, u) (2-l) 

J-+(X(~o)-f)‘P(X(t,)-*)+j fo(S,X(s),u(s))ds-min (2.2) 
to 

The minimum in (2.2) extends over a certain class of admissible controls. Let us assume that the 
functions f(s, x, L) and fo(s, x, U) and the constraints on u are such that a control that maximizes the 
Pontryagin function 

0, x, p, U) = prfl(s, x, U) -fo(s, x, u> - max 

can be expressed as a sufficiently smooth function 

u = u(s, x, p) (2.3) 

The superposition h(s, x, p, u) of the Pontryagin function with (2.3) is a Hamiltonian function for 
problem (2.1), (2.2), which we denote by H(s, x, p). Necessary conditions for an optimum in problem 
(2.1) (2.2) can be expressed as a boundary-value problem 

X’ =.fb X, u(s, X, p)) = H&, X, p) 

P’ = -f:(h x, u(& X, P>)P + fo, (s, X, u(s, X, p)) = -H, (s, X, p) 

POO) - p(w~o)-x), p(t) = 0 

Here we have used the following notation (which will be used constantly below). Let y(x) be a scalar func- 
tion and letz(x) = (zi(x), . . . , zl) be a vector-valued function of k variablesx = (xi, . . . ,xk). Theny, denotes 
the column vector (gradient) with components @J&j = 1, . . . , k, and z, the I x k matrix (Jacobian) with 
element @/&j, j = 1, . . . , k, i = 1, . . . , 1, at the intersection of the ith row and the jth column. 

On the assumption that the optimum problem (2.1), (2.2) is solvable (in connection with the 
estimation problem we shall again denote the solution by x,1,, to < s 6 t, and call it an estimate), and 
that the boundary-value problem (2.4) (2.5) has a unique solution, the solution will be the component 
X of the solution of the latter problem. 

As f varies over an interval [to, to + T], the problem of findingx,; (even for fixed s) involves solving 
new boundary-value problems for each t. This may be avoided by using a recurrent method to solve a 
certain family of boundary-value problems (2.7) and this in turn leads to the construction of a filter, 
e.g. for x& or for x;. 
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The following theorem yields a t-recurrent method for determining an estimate x& which is the left 
end of an optimal trajectory in problem (2.1), (2.2) (and at the same time the left end of X(s) in the 
boundary-value problem (2.4), (2.5)). 

Let X(s; x),p(s; x) be the solution of the Cauchy problem for system (2.4) with initial data 

X(r,) = x, p(r0) = P(x - F) (24 

One condition of Theorem 1 is that the matrixp&; x), t E [to, to + 7J, be non-singular. We note that 
sincep&; x) = P is invertible, the matrixp&; x) is invertible for all f sufficiently close to to. 

Theorem 1. Suppose that for t E [to, to + ZJ the matrix p,-‘(t; x) exists. Then the estimate x& is a 
solution of the Cauchy problem 

dx A to/t 
- - -P~‘(~~~~,t)fO,(~~X(t;~~,r),u(t,X(t;x~,t,O)), dt 

x&o = y (2.7) 

where X(s; x) (together with&; x)) is a solution of the Cauchy problem (2.4), (2.6);&; x) (together 
with X, (s; x)) is a solution of the Cauchy problem for the variational system 

x: - ~,*(~,X(~;x),p(s;x))X, + Hpp(s,x(s;x),p(s;x))p, 

Pi - -~,(~,X(s;x),p(s;x))Xx -H,,(s,X(s;x),p(s;x))p, 

X,(ql;x)= I,,,, p,(to;x) - P 

(2.8) 

The proof proceeds by differentiation with respect to t of the identity 

and of the obvious equality for t = to: X(t,) = xGt,, = X. 
Systems (2.4), (2.6) and (2.8) are used to evaluate the right-hand side of (2.7) when a numerical 

method is being used. 
To illustrate, let us consider Euler’s method. Let x@) be an approximation for x,;j,. Then x@+‘) is 

found as follows. Solve systems (2.4) and (2.8) in the interval [to, tk] with initial data 

x(t,)Xy p(t0 - P(XCk) -X), X,(~o)- 19 PXOO) = p 

As a result one finds X(t,; x@), p&k; x@)), and finally 

X(k+r) = xck) + ~[-p;l(tk;x’k’)fO,(tk, X(&;xk)) u(t,,X(f,;x’k’),O))] 9 

Thus, to integrate system (2.7) one has to integrate the systems shown above over time intervals 
[to, tk] of increasing length. 

Of course, after tindingx,;j an optimal trajectoryx,;, of problem (2.1), (2.2) is found as part of the 
solution X(s; xI;;I) of system (2.4), and an optimal control usTt is determined using (2.3) 

& = u(s, mx;,, 19 P(s;x,;,, )) - u(s, xs;, , /&) 

We will now consider an equation for XT= xl;l (which we shall call the filter equation). 

Theorem 2. The filter equation for x; is 

where K(s; x) is a solution of the Cauchy problem 
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K’ = KHz&, X6; 4, P(S; x))K + KH,(s, X(s; x), p(s; x)) + 

+ H&, X6; 4, PCS; x))K + H&, X(s; x), p(s; x)) (2.10) 

K(t,) = P’ 

proof. Equation (2.9) with K(s; x) = X,(s; x)p,-‘(s; x) is derived from the identity XL= X(t; x$), by 
using (2.7). Equation (2.10) is obtained by differentiating the relationship K = X#=-‘. 

Because of (2.10), Eq. (2.9) yields a slightly more economical estimation algorithm than (2.7), (2.4), 
(2.6) and (2.8). Indeed, knowing x; and K(t; x,;j,), one can determine && from (2.9) by, for example 
Euler’s method. One then integrates (2.4) in the reverse direction with initial dataX(t + &) = xAti, 
p(t + Af) = 0. The resulting solution X(s), taken over the interval [to, to + &I, obtaining K(t + &, 
x&+~), and this, together with the already known estimate&& enables us to proceed to the next step 
of the numerical integration of the filter (2.9). 

We shall now consider the solution of the problem in Section 1. Problem (1.3), (1.4) is of the class 
represented by problem (2.1), (2.2) and may therefore be tackled using the results of this section. 
Suppose that by the maximum condition u = z)(s, x, p), w = w(s, x, p). Setting up appropriate systems 
for X and p, one can then use either Eq. (2.7) for x& (in which case one needs systems for X, and px) 
or Eqs (2.9) for x; and (2.10) for K(t; xt;J. Having obtained, say, x;, one finds x& p,;l, to s s d t as 
solutions of a Cauchy problem for a system like (2.4) with initial data at the right end of the interval 
[to, t]: X(t) = x;, p(f) = 0. This solution yields both an optimal estimate x,;I of the state X(s) and an 
optimal estimate for the input z)(s) 

v:,, = v(.y, &P;,A fc)SSSf (2.11) 

based on observations over the interval [to, t]. 
Let us derive the filter equations for estimating the state of the system in the problem 

X’ =& fls, Jo, y(s) i= C(s)X(s) (2.12) 

where, unlike (1.1) and (1.2), the functions f and (p are independent of 2) and, to simplify matters, 
the observations are assumed to be linear. In that case, only the vector w remains of the required con- 
trol in the optimal control problem (1.3), (1.4). The maximum condition gives w = K1(s)DT(s)p, and 
the necessary conditions can be written as the following boundary-value problem 

X’ =fl~, X) + D(s)R-‘(s)DT(s)p 

P’ = -..<s x)p - cTm2(s)cv(~) - cwm 

P@o) = W(to) - 2 1, PO) = 0 

(2.13) 

(2.14) 

The filter equations (2.9) and (2.10) for this problem are 

z = f(r,$ I- K(r;x,:,,,)CT(r)e(r)(y(r)- C(r)x;), ,x; =x 

T 
$s,X(s;x))p(s;x) K + 

J II 
(2.15) 

+f,(s,X(s;x))K + KfxT((s,X(s;x))+ D(s)-R-‘(s)DT(s) 

K(r,;x) = P-’ 

(2.16) 

The expression in braces in (2.16) is the n x II matrix whose columns are (afxTl;bci)p, j = 1, . . . , n. 
When there is no noise in the initial object [6], the filter (2.15), (2.16) is simplified: the first equation 

in (2.13) is independent ofp and the last term drops out of (2.16). 
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In the linear case X,(S; x), p&; x), K(s; x) d oes not depend on x. Hence ah algorithms are 
substantially simplified and the resulting equations (2.9) and (2.10) are just a deterministic version of 
the Kahnan-Bucy filter. 

Let us consider the recurrent determination of the input in greater detail for the following linear 
system 

X' G A(s)X + B(s)w(s) (2.17) 

Y(S)& C(s)X(s) + G(s)v(s), to Q s d t (2.18) 

The problem of estimating the state X and the input v is related to the problem of minimizing the 
functional (1.4) (with q.$s, X, U) replaced by C(s)X(s) + G(s)u(s)) along trajectories of the system 

X’ k A(s)X + B(s)w + D(s)w (2.19) 

When there are no constraints on v and the equality in (2.19) is exact, the problem with D(S) = 0, 
R(s) = 0 and fixed t reduces to that considered in [8]. 

Problem (2.19), (1.4) may arise, for example, when system (1.1) is linearized in the neighbourhood 
of “nominaI” values X(t,) = X, z)(s) = qs). The system of equations for the increments AX and Av- 
which we may denote by X and ‘u without fear of confusion-takes the form of (2.17), (2.18), and the 
quantities X, U in the functional (1.4) will be zeros. Note that even when the initial system (1.1) does 
not involve noise (the equality in (1.1) is exact), the equality in the linear approximation system (2.17) 
wiIl no longer be exact. 

Let us establish the filter equation for problem (2.19), (1.4). The maximum condition yields the 
equalities 

v - F-‘(s)(S(s)C(s) + BT(s)p + GT(s)Q(s)(y(s) - C(s)x)) (2-W 

w = R-‘(s)DT((s)p, F = S + GTQG 

Taking these relationships into account, we 8nd the titer equations to be 

dx; / dr = A(t)x; + B(t)u; + KCT(t)Q(t)[y(r)- C(t)x,” - G(t)w;], x; - X 

v: - F-’ (t)(S(r)W) + GT(r)Q(t)(y(t) - C(W’ )) 

dK / dr = -K&Q- QGF-‘GTQ)CK + (A - BF-‘GTQC)K + 

+K(AT - CTQGF-‘ET) + BF-‘BT + DR-‘DT, K(to) - P-’ 

Ib look for an estimate x& to s s G t (at the same time determiningp,‘~ also), one must solve the 
following system in the reverse direction 

X’ = A(s)X + B(s)w(s, X, p) + D(s)R-‘(s)DT(s)p, X(t) =x; 

P ’ = -AT(s)p - CT(s)Q(s)(y(s) - C(s)X - G(s)u(s, X, p)), p(r) = 0 

where o is replaced by the function of (2.20). By (2.11) and (2.20), and estimate uS;t for the input is 
found using the relation 

Remadc 1. The last term in (2.2) may be any non-linear function which is strictly convex in X(t,). 

Remark 2. A previous publication [6] investigated the case in which there is no a priori information about the 
initial data (i.e. P = 0) and the case in which some of the components of the initial vector are known exactly. These 
problems can also be generalized. 
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3. LOCALLY OPTIMAL FILTERS 

As already pointed out, implementation of the filter (2.9), (2.10) for non-linear systems involves 
repeated calculations. These may be avoided by the device of locally optimal estimation, that is to say, 
successive solution of local optimal problems in which the estimate over an interval [t, t + k] is derived 
by minimizing the functional 

wherexy is the estimate (we have introduced the notationxr for the new estimate) obtained up to time 
t and P(f) a specially constructed positive definite matrix, P(ts) = P. 

We will now derive an equation for x’; and I!,@) = P’(t). tit tk+r = tk + k, xr, Lk be approximations 
of& L(tk) (k = 0, 1, . . . ), respectively. Sol ving the minimization problem (3.1) over the interval [to, 
to + At], we see that the optimal estimate xc is equal to XT + O(g), where 

x,;, -.X0” =z, L(fo)-fQ = P-’ 

x; =a; +[f(to,~~,~(to,~~,O~~-~f~,~~ro,x~~~~to~x~.O~~l~r 

The following equality holds for the gain matrix K(tl; x&,,)(see (2.10)) 

K(t,;x,y,,,,) = r, +K)H,(~oJ(~o7;,,,, )~P(ro;x;,,,, ))L, + 

+L$-&J~o~ x(to4;,,,, )#(fo7,y,,,, ))+ H,,x(foJ(~o~~;,,,,) 

P(~~;x;,,,,))& +H,(~o.X(~o~~~,,,)~~(~o~~~,~f,))lA~+~(A~2) 

Since X(ts; x2,,) = xg + O(b) and&r; x&J = 0, so that p(to; x&J = O(At), it follows that 

KC4 ;$,,,, ) - 4 + 0(At2) 

where 

r, = r, +[Z+H,(ro,x~,O)l, + H,(~o~~Y~W-O + 

+~H,(ro,x~,O)+H,tro,x,‘~O~l~r 

Having calculatedx~ and L1, we proceed to estimate over the interval [tl, tl + At], taking the last term 
in (3.1) to be (X(tl) -xfl)TL-ll(X(tl) -x;l) and integrating from tl + At. Proceeding as before, we obtain 
a sequence 

xi+, -xi +~f~~tr~~,~~~L,~~~~~~-~LkfO,~rk,~~,~~r~r~~,O~~lAr 

L k+l = Lk +[LkH,(t,,x;,O)Lk + L,H,0,,x;,O>+ 

+H,(rk,x;,O)Lk + ~,(t,,x~,WAt 

Letting AZ tend to zero, we obtain a locally optimal filter, expressed as a system of differential equations 

4” ~dt=f~t,x:~~~r,x:,O~~-Lfox~r,x:,~(t,x:,~(r,x:,O)), X; =x (3.2) 

dLl dr - LH,(r,x,“,O)L+ LH,..(r,x,“,o)+ 

+H,(r,x,“,O)L+ H,(r,x,“,O), L(ro)- P-’ (3.3) 

We will show that if fa(s, x, U) is convex with respect to the variables (x, U) and strictly convex with 
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respect to u, then the solution L(t) of Eq. (3.3) is a positive definite matrix. Indeed, in view of the equality 

Hpa: = Hs it will suffice to show that the matrices H,(t, x, 0) and -H,(t, x, 0) are positive semi-definite. 
Let us evaluate -H,(t, x, 0) and H,(r, x, 0) on the assumption that there are no constraints on the 

control u. We have 

Hence, forp = 0 

-H,(t,x,O) = fo,(r,x,u(r,~,O))+fo,(r.~,~(r,~.O))~,(r,~,O) (3.4) 

Now the maximum condition implies the identityf:p -foU = 0. Differentiating with respect to x, we get 

whence, puttingp = 0, we obtain 

‘4, ct. x, 0) - -A);; (t, x,u(t,x,O))f~~(f.X,U(f,X,O)) 

Substituting (3.5) into (3.4) and taking the equalityf, = & into consideration, we obtain 

(3.5) 

-H,(r,x,O) - fo,(r,x,~(r~&O))- 

-~~~~~(r,X,U(r,X,O))fO;~(t.X.U(r,X~O))fD,,(r.~.~(r.~~O)) (3.6) 

It can be shown that, under our assumptions concemingfa, the matrix on the right of (3.6) is indeed 
positive semi-definite. 

Similar manipulations yield the equality 

H,,&x,O) - fu(r,~,~(t,x,O))~~~(r,x,~(r,~,O))~~(r,~,~(r~~~O)) 

which, together with (3.6), proves that the gain matrix L(t) is indeed positive definite when there are 
no constraints on the control. 

It can be proved that, even when constraints are imposed on the control (assuming, of course, as 
before, that the function u(s, x, p) is sufficiently smooth), the matrix L(t) will still be positive definite. 

To implement the filter (3.2) (3.3), unlike the optimal filter, it is no longer necessary to perform 
repeated calculations or to store all a priori information about observations. This filter is of the same 
dimensions as a linear filter. However, the gain matrix cannot be evaluated in advance: it depends on 
the current estimate xr, i.e. in the final analysis, on the observations. 

It should be noted that, in the case of a linear system with quadratic objective function, the above 
procedure of locally optimal estimation yields an optimal estimate. 

The locally optimal filter corresponding to the filter (2.15) (2.16) has the form 

dx,” / dt - f(r, XI’ ) + LCT(t)Q(r)(y(r) - C(r)+” ), x; = X (3.7) 

dLldt --LCT(r)Q(r)C(r)L+fx(t,x;)L+ (3.8) 

+Lf,(r,X;) + D(t)R-‘(r)DT(r), L(ro) = P-’ 

A construction similar to (3.7), (3.8) was obtained when designing an approximate non-linear filter 
in the stochastic estimation problem (see [9])_ 
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4. DIFFERENT REPRESENTATION OF FILTERS 

For simplicity, we will con&e our attention to estimating the state of a system (2.12) in which the 
filter is defined by Eq. (2.15). The basic object in constructing this filter is the solution X(3; x), p(s; x) 
of the Cauchy problem for system (2.13) with initial data at the left end of the interval [to, t]: X($0) = 
x, p(tl-J) = P(x -X). 

We shall associate the construction of the filter with another Cauchy problem for system (2-13). Let 
X(s; t, x),p(s; t, x) denote the solution of (2.13) with initial data at the right end of the interval [too, t]: 
X(t) = x,&t) = 0. We obtain the following equation for the desired estimate n = x; 

which impfies the fotiowing theorem, 

Z’&e~?zr~ 3. Suppose that for t E [&, tO + ?J the matrix (PX&; t, x) -p&; l, x))-’ exists. Then an 
estimates,? of the state X(t) in system (2.12) which is optimal in problem (1.3), (1.4) is a solution of 
the Cauchy problem 

where the matricesX,(s; t,x)p,(s; 8,x) satisfy the system of variational equations (2.8) with 

and initial data 

X,0; t, x) = I, p,( t; t, x) = 0 (4.4) 

The vectors X,(s; t, x) p,(s; t, x) satisfy the system of equations 

with initial data 

One condition of Theorem 3 is that the matrix PXJ(@; t, x) - px(io; t, x) must be non-singular for 
t E [to; to +YJ. Note that as the matrix PXx(to; to,x) -p&; to, x) = P is invertible, the same is true for 
all t sufficiently close to to. 

It may turn out that the Cauchy problems for system (2.13) with initial data at the left and the right 
ends of the inteIva1 are ill posed (this happens, for example, with long time intervals when the initial 
system (2.12) is asymptotically stable). In that case a more natural choice for the basic object of the 
construction is a suitable boundary-value problem. 

For example, consider the boundary-value problem for system (2.13) with boundary conditions 

Denote the solution by Xfs; t, x), p(s; f, x)* It should be noted that the notation for the solution always 
involves only the arguments to be varied, but the meaning may be different: whereas in (4.1), (4.2) 
X(s; t, x), p(s; t, x) denotes a solution of the Cauchy problem for system (2.13) with X(t) = x, p(t) = 0, 
here the same notation stands for a solution of the boundary-value problem (2.13), (4.7). 

Z%eorem 4. Suppose that for t E [to; to +TJ the matrix (P - px(ro; t, x)-‘) exists. Then an optimal 
estimate x& for the initial state X(lo) in system (2.12) satisfies the Cauchy problem 
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where p,(s; t, x) (together with X,(s; t, x)) is a solution of the following boundary-value problem for 
system (2.8), (4.3) 

Xx(tO; t, x) = I, p,(t; I, x) = 0 (4.9) 

andp,(s; t, x) (together with X,(s; t, x)) is a solution of the following boundary-value problem for system 
(4.5) (4.3) 

X,(r,; t, x) = 0, ~,(t; r, x) = Cr(t>Q(t)W - C(t)X(t; r, x)) (4.10) 

The proof is obtained by differentiating the following identity with respect to 1 

P(& -x):P(r~;r,x~,,) 
One possible procedure for constructing the filter (4.8) is as follows. Knowing xl;j, and a solution 

X6; r, x&)3 P(G t, x& find (say, by differential or difference pivotal condensation methods) solutions 
X,(3; t, x;J, p,(s; t, xt;;t) and X,(s; I, x&&p,@; r, x& of the linear boundary-value problems (2.8), (4.3), 
(4.9) and (4.5), (4.3), (4.10) withx = x2* for to < s d t. Then, having selected a stepsize Ar for the time, 
use Euler’s method to derive x=x,;~+~ from (4.8) accurate to within O(d) at each step. Put A$= 

xt;t+Af - x& Then we can write 

X(s;t + At, x;,,,+ti )- XW,x;,,)+ X,W,x;,,)Af+ 

+Xx(~;t,x;,&x; + O(A.t2), r, 6 s G t 

An analogous relationship will hold for p(s; t + M, x;~+&. The solution obtained in the interval 
[to, t] may then be continued to the interval [to, t + b], e.g. by solving the Cauchy problem in the short 
time interval [t, t + A t]. This gives x&+~, X(s; c + A& x~~+,,J,p(s; t + A, ~t;j+~), to s s =G t + At, from 
which one can now proceed to the next step. 

To avoid the accumulation of errors, one must take measures (e.g. by Newton’s method) to improve 
the solution of the boundary-value problem (2.13), (2.14) after every few steps. 

Note that when there is no noise in system (2.12), the boundary-value problems just considered 
reduce, thanks to the fact that X is independent ofp, to successive Cauchy problems: from left to right 
for X, and then from right to left forp. 

Besides the filter representations already mentioned, there are many others. For example, if the 
basic object is taken to be a boundary-value problem for (2.13) with boundary conditions for X at the 
left and right ends, then the original boundary conditions (2.14) yield 2n identities for the t-recurrent 
determination ofx& andx;. In principle, any boundary-value problem for (2.13) that is consistent with 
the original boundary conditions (2.14) may be used. Such a boundary-value problem may contain k, 
0 =G k G 2n, unknowns, relative to which one can always derive from (2.14) k identities (as functions 
oft). The result will be a certain representation of the filter. 

Let us consider the filter obtained by letting the basic object be the boundary+alue problem (2.13), 
(2.14) itself. In that case k = 0 and the solution X(8; t), p(s; t), to G s < t depends only on t. Clearly, 
x,;t = X(s; t). 

Theorem 5. The equation of the filter for x; is 

h: I dz - f&x;) + x,(w), x; - z (4.11) 

where X,(s; t), p(s; t), to s s s t is a solution of system (4.5), (4.3) with boundary conditions 

p,(to; 0 = PX,(to; r). ~0; r) = ‘3OQW(t) - CWWc t)) (4.12) 
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The proof (as in the previous theorems) follows from the identityx; = X(t; t). 
If the criterion is the number of dimensions of the auxiliary system of differential equations needed 

to formulate the characteristics of the filter, the most rational choice for the basic object is indeed the 

original problem (2.13), (2.14). 
We mention, as an example, that the characteristics of a filter have been formulated on the basis of 

a solution X(x; t, c), p(s; t, c) of a boundary-value problem for system (2.13) with boundary conditions 

PQO) = P(X(t,) - 9, P(f) = c [l, 21. This problem, unlike those considered here, is not consistent (if 
c # 0) with the boundary conditions of the initial problem, and the construction of the filter requires 
a knowledge not only of X,,p, but also of X,,p,. 

Remark 3. The question of which filter representation to choose depends on the specific features of the 
problem. It would seem that the recommendations depend essentially on the exponential dichotomy property of 

the system. 
Here ([6], see also [l-3]) we have used a priori information on the state at the initial time. Such information 

does not always regularize the estimation problem (an example is the equationx” = a% for large a). In such cases 
one naturally appeals to additional information about the boundary conditions. This approach yields different 
estimation algorithms, which also admit of a variety of lilter representations. Of course, the questions touched 

upon in this remark require special investigation. 

5. NUMERICAL EXPERIMENTS 

As (1.1) and (1.2), consider the system 

X’GhX(4-X2), h>O 

y(s) A X(s). to c s c f (5.1) 

(Eq. (5.1) is the equation for the first approximation of the amplitude in a solution of Van der Pol’s equation). 
Taking D(s) = 1, Q(s) = 1, R(s) = 1 in (1.3) and (1.4), one finds the optimal estimate for X(s) by solving the 

following boundary-value problem (see Section 2) 

x’=)cx(4-xq+p, (5.2) 

p’ = -)c(4 - 3X2)1, - (Y(s) - X) 

p(fc) = P (X(fc) - x ). p(r) = 0 (5.3) 

We will write two representations of the filter, deriving from different basic objects. In the first case we use 
Cauchy problems. The filter will be 

dx;/, ldr - ~;‘(f;x,:,,~)(y(f)-X(r;x~,,)) (5.4) 

x: = X(U&,) 

Implementation of this filter involves the solution of initial-value problems (see Section 2) in intervals [to, t], to < 

t d T, of increasing length for system (5.2) and the variational system 

x; =h(4-3X2)X, +px, (5.5) 

p; =(1+6hXp)Xx-h(4-3X*& 

The second filter derives from the boundary-value problem (5.2) (5.3); it has the form 

(5.6) 

IIb implement (5.6) one has to solve an auxiliary linear boundary-value problem (see Section 4) for the system 

x; +4-3X2)X, +pt, p;-(1+6hX,)X,-h(4-3X*)p, (5.7) 



The construction of filters in non-linear deterministic systems 

‘Itlble 1 

981 

A h=O.l 0.5 1.0 

2,310 1.986 1.591 

0.1 2.312 2.010 2.000 

2.309 2.010 2.000 

2.320 1.836 1.141 

0.5 2.329 2.01 t 2.OQO 

2.325 2.010 2.000 

in intervals [r~ t] of increasing length, and a Cauchy problem for (5.2) in the intervals [f, t + &J. Note that the 
initial-value problem for system (5.2), (5.5) is computationally unstable (even for relatively small h > 0, while the 
boundary-value problem for system (5.7) is stable. Although the exact solutions of the equations of different filters 
yield the same optimal estimates, the results of numerical integration may differ considerably. 

The numerical experiments were carried out with X(t,) = 3, X = 3(1 + A), 0 G s d 1; the noise in both system 
and observations was a sum of high-frequency oscillations. 

‘l&be 1 gives experimental results for different h and A, compared with the optimal estimate. The optimal 
estimate XT was calculated using highly accurate methods with a small step size in numerical integration. 
Implementation of the filters (5.4) and (5.6) involved solving Cauchy problems using Euler’s method. The linear 
boundary-value problem for (5.7) was solved by the difference pivotal condensation method. The first row in 
‘IBble 1 gives results for the filter (5.4) for each A value, and the second, for the filter (5.6). The third row presents 
the optimal estimate. 

Analysis of the numerical results showed that for small values of the parameter h (see h = 0.1) both algorithms 
give similar values of the estimate, irrespective of errors in the system and the observations, or of the closeness of 
the a priori value? toX(@. As 1 increases (see L = 0.5) the instability of the initial problems is amplified, affecting 
the quality of the numerical solution of (5.4), especially at distant X values. For certain h values (see h = 1.0) 
application of the first f3ter makes the numerical value of the estimate deviate substantially from the optimal 
estimates; even over short observation intervals. At the same time, the numerical solution relying on a boundary- 
value problem yields a nearly optimal estimate. 

The optimal estimate ~2~ of the initial state X(to) in this experiment levelled off quite quickly. In the numerical 
implementation of the filter, the estimate for X(t,) may only deteriorate in quality as the observation interval 
becomes longer, owing to computation errors. The effect is more marked in relation to the numerical integration 

of the first filter. The influence of computation errors appears even in fairly short intervals if h is increased. 
Thus, in system (5.1), the second filter representation (5.6) is more satisfactory from the point of view of 

computation. 

Note that in all experiments with this example, a locally optimal filter gives an estimate x7 near the optimal 
estimate _T~T 

We wish to thank B. I. Anan’yev and A. V Kryazhimskii for discussing this work. 
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